28 research outputs found

    The Temporal Muscle of the Head Can Cause Artifacts in Optical Imaging Studies with Functional Near-Infrared Spectroscopy

    Get PDF
    Background: Extracranial signals are themain source of noise in functional near- infrared spectroscopy (fNIRS) as light is penetrating the cortex but also skin and muscles of the head. Aim: Here we performed three experiments to investigate the contamination of fNIRS measurements by temporal muscle activity. Material and methods: For experiment 1, we provoked temporal muscle activity by instructing 31 healthy subjects to clench their teeth three times. We measured fNIRS signals over left temporal and frontal channels with an interoptode distance of 3 cm, in one short optode distance (SOD) channel (1 cm) and electromyography (EMG) over the edge of the temporal muscle. In experiment 2, we screened resting state fNIRS-fMRI (functional magnetic resonance imaging) data of one healthy subject for temporal muscle artifacts. In experiment 3, we screened a dataset of sound-evoked activity (n = 33) using bi-temporal probe-sets and systematically contrasted subjects presenting vs. not presenting artifacts and blocks/events contaminated or not contaminated with artifacts. Results: In experiment 1, we could demonstrate a hemodynamic-response-like increase in oxygenated (O(2)Hb) and decrease in deoxygenated (HHb) hemoglobin with a large amplitude and large spatial extent highly exceeding normal cortical activity. Correlations between EMG, SOD, and fNIRS artifact activity showed only limited evidence for associations on a group level with rather clear associations in a sub-group of subjects. The fNIRS-fMRI experiment showed that during the temporal muscle artifact, fNIRS is completely saturated by muscle oxygenation. Experiment 3 showed hints for contamination of sound-evoked oxygenation by the temporal muscle artifact. This was of low relevance in analyzing the whole sample. Discussion: Temporal muscle activity e. g., by clenching the teeth induces a large hemodynamic-like artifact in fNIRS measurements which should be avoided by specific subject instructions. Data should be screened for this artifact might be corrected by exclusion of contaminated blocks/events. The usefulness of established artifact correction methods should be evaluated in future studies. Conclusion: Temporal muscle activity, e. g., by clenching the teeth is one major source of noise in fNIRS measurements

    Stress-related dysfunction of the right inferior frontal cortex in high ruminators: An fNIRS study

    No full text
    Repetitive thinking styles such as rumination are considered to be a key factor in the development and maintenance of mental disorders. Different situational triggers (e.g., social stressors) have been shown to elicit rumination in subjects exhibiting such habitual thinking styles. At the same time, the process of rumination influences the adaption to stressful situations. The study at hand aims to investigate the effect of trait rumination on neuronal activation patterns during the Trier Social Stress Test (TSST) as well as the physiological and affective adaptation to this high-stress situation. Methods: A sample of 23 high and 22 low ruminators underwent the TSST and two control conditions while their cortical hemodynamic reactions were measured with functional near-infrared spectroscopy (fNIRS). Additional behavioral, physiological and endocrinological measures of the stress response were assessed. Results: Subjects showed a linear increase from non-stressful control conditions to the TSST in cortical activity of the cognitive control network (CCN) and dorsal attention network (DAN), comprising the bilateral dorsolateral prefrontal cortex (dlPFC), inferior frontal gyrus (IFG) and superior parietal cortex/somatosensory association cortex (SAC). During stress, high ruminators showed attenuated cortical activity in the right IFG, whereby deficits in IFG activation mediated group differences in post-stress state rumination and negative affect. Conclusions: Aberrant activation of the CCN and DAN during social stress likely reflects deficits in inhibition and attention with corresponding negative emotional and cognitive consequences. The results shed light on possible neuronal underpinnings by which high trait rumination may act as a risk factor for the development of clinical syndromes. Keywords: Trier Social Stress Test (TSST), Functional near-infrared spectroscopy (fNIRS), Inferior frontal gyrus (IFG), Functional connectivity, Rumination, Cognitive control network (CCN

    The ratio between the CSF layer thickness

    No full text
    <p><b> and the thickness of the superficial tissue layer </b><b> plotted against the difference of the simulated light absorbing gray matter volume </b><b> and the analytically determined gray matter volume </b><b> (see </b><a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0026377#pone-0026377-g003" target="_blank"><b>figure 3</b></a><b>).</b> The significant positive correlation indicates, that the simple ellipsoid model underestimates when the CSF layer is relatively thick compared to the superficial tissue layer.</p

    Slice through optode plane of a simple tissue layer model, that was implemented to validate the configuration.

    No full text
    <p>The absorption intensity is logarithmically scaled showing the distribution of high (red) and low (blue) absorption. (A) Absorption distribution using scattering coefficients and anisotropic scattering (). (B) Absorption distribution using reduced scattering coefficients in conjunction with isotropic scattering ( for all tissues). The two distributions overlap more than , while the simulation under the conditions of (B) runs around six times faster.</p

    Scalp to skull distance (squares), scalp to CSF distance (triangles) and scalp to cortex distance (SCD, circles) are plotted against SCD to illustrate the proportional change of tissue types with increasing SCD.

    No full text
    <p>The smallest increase of thickness is observed for the skull layer (slope ), whereas the increase in CSF layer thickness with increasing SCD is twice as steep (slope ). Note, that the -axis is flipped, thus decreasing lines have positive slopes.</p
    corecore